martes, 17 de junio de 2014

FISIÓN Y FUSIÓN NUCLEAR



Fisión nuclear
La fisión es la división de un nucleu atómico pesado (Uranio, plutonio, etc.)en dos o más fragmentos causado por el bombardeo de neutrones, con liberación de una enorme cantidad de energía y varios neutrones.
Cuando la fisión tiene lugar en un átomo de Uranio 235se obserba su triple fenómeno;
- Aparace una cantidad de energía, elevada en 200MeV que traduce la perdida de masa.
- Los produntos de ruptura (300 o´400)son radiactivos. Su presencia expleca los efectos de explosión de un artefacto nuclear.
- Cada nucleo fisionado emite 2 ó 3 neutrones que provocan el fenómeno de reacción en cadena y explican la noción de la masa crítica.
Se observa el mismo fenómeno de fusión en el plotinio 239 (artificial) y en el Uranio 233 (artificial). Ambos se fabrican a partir del Torio. Los nucleos se denominan nucleos flexibles.
Para que se produzca la fisión hace falta que el neutrón incidente reuna unas condiciones determinadas. Para actuar sobre el Uranio 235 y 233 y el Plutonio 239, el neutron ha de ser un neutron termicocuyaenergía es de la orden 1/40 eV, lo cual responde a una velocidad de 2 Km/s. El Uranio 238es igualmente fisible pero con neitrones rápidos cuya energía es 1MeV.



Fusión nuclear
La fusión de determinados núcleos de elementos ligeros es uno de los dos orígenes de energía nuclear, siendo la otra, la antes citada.
En la fusión intervienen los isótopos de hidrógeno (deuterio, tritio). Cuando se fusionan los nucleos de dichos isótopos se observa la aparición de energía que procede de la perdida de de masa, de acuerdo con la relación de Einstein E=m.c2.
La fusión de los átomos ligeros presenta dificultades especiales tanto desde el punto de vista teórico como del tecnológico. Esto ocurre por estar los nucleos cargados positivamente.



La fusión y la fisión nuclear
Encontrar recursos energéticos casi inagotables, baratos y no contaminantes ha sido un afán del hombre casi desde el primer momento.
El gran salto cuantivo lo dió el descubrimiento, hacia el año 1938-1939, es decir, la separación del nucleo de un átomos en otros elementos , liberaba gran cantidad de energía.
Desgraciadamente esta energía, a pesar de su rendimiento, es también altamente peligrosa- recerdese que uno de el militar en Hiroshima y Nagasaki, y el desastre de Chernobil-. La alternativa del futuro es la fusión nuclar. Las diferencias entre la fisión y la fusión nuclear son;
Por la fusión nuclear, un nucleo pesado como el Uranio 235, es dividido generalmente en dos nucleosmás ligeros debido a la colisión de un neutron (recordemos que un átomo se compone de electrones, neutrones y protones). Como el neutron no tiene carga electrica atraviesa facilmente el nucleo del Uranio. Al dividirse este, libera más neutrones que colisionan con otros átomos de Uranio creando la conocida reacción en cadena de gran poder radiactivo y energético. Esta reacción se produce a un ritmo muy acelerado en las bombas nucleares, pero es controlado para usos pacíficos.
Por contra, la fusión es la unión de dos nucleos ligeros en uno más pesado, obteniéndose del orden de cuatro veces más energía que en la fisión.
Mientras que la fisión nuclearse conoce y puede controlarse bastante bien, la fusión plantea el siguiente gran inconveniente, que hace que continue en fase de estudio, aunque entrando en el siglo XXI se espera resolver:


Relatividad, Predecibilidad y Caos




Teoría de la relatividad
La teoría de la relatividad está compuesta a grandes rasgos por dos grandes teorías (la de la relatividad especial y la de la relatividad general) formuladas por Albert Einstein a principios del siglo XX, que pretendían resolver la incompatibilidad existente entre la mecánica y el electromagnetismo.
La primera teoría, publicada en 1905, trata de la física del movimiento de los cuerpos en ausencia de fuerzas gravitatorias, en el que se hacían compatibles las ecuaciones de Maxwell del electromagnetismo con una reformulación de las leyes del movimiento. La segunda, de 1915, es una teoría de la gravedad que reemplaza a la gravedad newtoniana pero coincide numéricamente con ella en campos gravitatorios débiles. La teoría general se reduce a la teoría especial en ausencia de campos gravitatorios.
Relatividad especial (relatividad restringida)
Publicada por Albert Einstein en 1905, describe la física del movimiento en el marco de un espacio-tiempo plano, describe correctamente el movimiento de los cuerpos incluso a grandes velocidades y sus interacciones electromagnéticas y se usa básicamente para estudiar sistemas de referencia inerciales.
Relatividad General
Publicada por Albert Einstein en 1915 y 1916.
La relatividad general para aplicar plenamente el programa de Ernst Mach de la relativización de todos los efectos de inercia, incluso añadiendo la llamada constante cosmológica a sus ecuaciones de campo para este propósito.
Predecibilidad
Predicción tiene por etimología el latín pre+dicere, esto es, “decir antes”. No se trata sólo de “decir antes”, sino de “decirlo bien”, o sea, acertar; también, hacerlo con un plazo suficiente para poder tomar las medidas que se crean oportunas, y además tener una idea de hasta cuándo es posible predecir el futuro con cierto éxito.
Cuando se efectúa una predicción, se está estimando un valor futuro de alguna variable que se considere representativa de una cierta situación.
También se pueden hacer predicciones espaciales, como la ubicación, movilidad e intensidad local de fenómenos extremos, caso por ejemplo de los huracanes y tormentas tropicales
Normalmente ambos tipos de predicción están ligados y se realizan a la vez, como lo prueban los productos que ofrecen las s grandes agencias e institutos de Meteorología y Climatología.
Pueden construirse de modos muy diversos, de algunos de los cuales nos ocuparemos en este trabajo, y su bondad se mide -como es natural- por el porcentaje de aciertos en situaciones del pasado predichas con igual técnica. Las bases de registros disponibles hoy día permiten realizar experimentos de predecibilidad con datos pasados y simular situaciones ya conocidas mediante diversas técnicas, estudiando y comparando los resultados.
CAOS
Teoría del caos es la denominación popular de la rama de las matemáticas, la física y otras ciencias que trata ciertos tipos de sistemas dinámicos muy sensibles a las variaciones en las condiciones iniciales. Pequeñas variaciones en dichas condiciones iniciales pueden implicar grandes diferencias en el comportamiento futuro; complicando la predicción a largo plazo. Esto sucede aunque estos sistemas son en rigor determinismos es decir; su comportamiento puede ser completamente determinado conociendo sus condiciones iniciales.
Los sistemas dinámicos se pueden clasificar básicamente en:
Estables, Inestables, Caóticos.
Un sistema estable tiende a lo largo del tiempo a un punto, u órbita, según su dimensión (a tractor o sumidero). Un sistema inestable se escapa de los atractores. Y un sistema caótico manifiesta los dos comportamientos. Por un lado, existe un a tractor por el que el sistema se ve atraído, pero a la vez, hay "fuerzas" que lo alejan de éste. De esa manera, el sistema permanece confinado en una zona de su espacio de estados, pero sin tender a un a tractor fijo.
A tractores extraños
La mayoría de los tipos de movimientos mencionados en la teoría anterior suceden alrededor de a tractores muy simples, tales como puntos y curvas circulares llamadas ciclos límite. En cambio, el movimiento caótico está ligado a lo que se conoce como a tractores extraños, que pueden llegar a tener una enorme complejidad como, por ejemplo, el modelo tridimensional del sistema climático de Lorenz, que lleva al famoso a tractor de Lorenz conocidos, no sólo porque fue uno de los primeros, sino también porque es uno de los más complejos y peculiares, pues desenvuelve una forma muy peculiar más bien parecida a las alas de una mariposa.

EFECTO MARIPOSA
 La idea de la que parte la Teoría del Caos es simple: en determinados sistemas naturales, pequeños cambios en las condiciones iniciales conducen a enormes discrepancias en los resultados. Este principio suele llamarse efecto mariposa debido a que, en meteorología, la naturaleza no lineal de la atmósfera ha hecho afirmar que es posible que el aleteo de una mariposa en determinado lugar y momento, pueda ser la causa de un terrible huracán varios meses más tarde en la otra punta del globo.


Para empezar, el “efecto mariposa” recibe este nombre a partir de la idea del meteorólogo Edward Loren, quien plantea la idea de que, dadas unas condiciones iniciales de un determinado sistema, la más mínima variación en ellas puede provocar que el sistema evolucione en formas completamente diferentes. Observó que pequeñas diferencias en los datos de partida, algo aparentemente tan simple como utilizar 3 ó 6 decimales, llevaban a grandes diferencias en las predicciones del modelo. De tal forma que cualquier pequeña perturbación, o error, en las condiciones iniciales del sistema puede tener una gran influencia sobre el resultado final. Es decir, cambios minúsculos que conducen a resultados totalmente divergentes.
Su nombre proviene de las frases: “el aleteo de las alas de una mariposa se puede sentir al otro lado del mundo” (proverbio chino) así como, “el simple aleteo de una mariposa puede cambiar al mundo”.  



CUÁNTOS ( DESCUBRIMIENTO, TEORÍAS Y ESTRUCTURA)


¿QUÉ ES EL ÁTOMO?


La unidad más pequeña de un elemento químico que mantiene su identidad o sus propiedades y que no es posible dividir mediante procesos químicos. 
A principios del siglo XX, se había pensado que los átomos eran indivisibles, de ahí su nombre a-tomo- 'sin división'

e- = abreviatura de electrones

   p+ = abreviatura de protones

   n = abreviatura de neutrones








* Demócrito fue el primero en afirmar que la materia está compuesta por átomos, y que estos eran indivisibles.
*  Dalton en 1803 lanzó su teoría atómica de la materia. En ella decía que todos los elementos que se conocen están constituidos por átomos y que eran indivisibles Los átomos de un mismo elemento son iguales entre sí, tienen su propio peso y cualidades propias.
Los átomos de los diferentes elementos tienen pesos diferentes.
Los átomos permanecen sin división, aun cuando se combinen en las reacciones químicas.
Los átomos, al combinarse para formar compuestos guardan relaciones simples.
Los átomos de elementos diferentes se pueden combinar en proporciones distintas y formar más de un compuesto.


*Luego del descubrimiento del electrón en 1897 por Joseph John Thomson, se determinó que la materia se componía de dos partes, una negativa y una positiva. La parte negativa estaba constituida por electrones, los cuales se encontraban según este modelo inmersos en una masa de carga positiva a manera de pasas en un pastel.
*
*

*En 1911 Rutherford, lanzó la primera teoría sobre la estructura del átomo, en ella decía que los electrones giraban alrededor del núcleo como si fuera un sistema solar en miniatura. Esta teoría se mantuvo hasta 1913



*1913, fecha en la cual Bohr, lanzó una nueva teoría atómica, en ella decía que los electrones giran alrededor del núcleo en órbitas. Esta teoría fue y es de las más importantes, llamada Teoría Atómica de Bohr.


«El átomo es un pequeño sistema solar con un núcleo en el centro y electrones moviéndose alrededor del núcleo en órbitas bien definidas». Las órbitas están cuantizadas (los e- pueden estar solo en ciertas órbitas






Cada órbita tiene una energía asociada. La más externa es la de mayor energía.
Los electrones no radian energía (luz) mientras permanezcan en órbitas estables.
Los electrones pueden saltar de una a otra órbita. Si lo hace desde una de menor energía a una de mayor energía absorbe un cuanto de energía (una cantidad) igual a la diferencia de energía asociada a cada órbita. Si pasa de una de mayor a una de menor, pierde energía en forma de radiación (luz).

Bohr dió la explicación al espectro de emisión del hidrógeno. Pero solo la luz de este elemento. Proporciona una base para el carácter cuántico de la luz, el fotón es emitido cuando un electrón cae de una órbita a otra, siendo un pulso de energía radiada.






martes, 6 de mayo de 2014

TEMAS DE FÍSICA II


Luz


Se llama luz (del latín luxlucís) a la parte de la radiación electromagnética que puede ser percibida por el ojo humano. En física, el término luz se usa en un sentido más amplio e incluye todo el campo de la radiación conocido como espectro electromagnético, mientras que la expresión luz visible señala específicamente la radiación en el espectro visible.
La óptica es la rama de la física que estudia el comportamiento de la luz, sus características y sus manifestaciones.
El estudio de la luz revela una serie de características y efectos al interactuar con la materia, que permiten desarrollar algunas teorías sobre su naturaleza.



 
  1.- ¿Qué es la luz?
La luz es una radiación que se propaga en forma de ondas. Las ondas que se pueden propagar en el vacío se llaman ondas electromagnéticas. La luz es una radiación electromagnética.

Características de las ondas electromagnéticas
Las ondas electromagnéticas se propagan en el  vacío a la velocidad de 300000 km/s, que se conoce como "velocidad de la luz en el vacío" y se simboliza con la letra c (c = 300,000 km/s).
 En cualquier otro medio, la velocidad de la luz es inferior.
La energía transportada por las ondas es proporcional a su frecuencia, de modo que cuanto mayor es la frecuencia de la onda, mayor es su energía.   

2.- La luz se propaga en línea recta
La luz se propaga en línea recta. La línea recta que representa la dirección y el sentido de la propagación de la luz se denomina rayo de luz (el rayo es una representación, una línea sin grosor, no debe confundirse con un haz, que sí tiene grosor).
Un hecho que demuestra la propagación rectilínea de la luz es la formación de sombras. Una sombra es una silueta oscura con la forma del objeto



2.1.- La luz se refleja
La reflexión de la luz se representa por medio de dos rayos: el que llega a una superficie, rayo incidente, y el que sale "rebotado" después de reflejarse, rayo reflejado.
Si se traza una recta perpendicular a la superficie (que se denomina normal), el rayo incidente forma un ángulo con dicha recta, que se llama ángulo de incidencia.
 
La reflexión de la luz es el cambio de dirección que experimenta un rayo luminosos al chocar contra la superficie de los cuerpos. La luz reflejada sigue propagándose por el mismo medio que la incidente.
La reflexión de la luz cumple dos leyes:
- El rayo incidente, el reflejado y la normal están en un mismo plano perpendicular a la superficie.
- El ángulo de incidencia es igual al ángulo de reflexión.




2.2.- La luz se refracta
La refracción de la luz es el cambio de dirección que experimentan los rayos luminosos al pasar de un medio a otro en el que se propagan con distinta velocidad. Por ejemplo, al pasar del aire al agua, la luz se desvía, es decir, se refracta.
Las leyes fundamentales de la refracción son:
- El rayo refractado, el incidente y la normal se encuentran en un mismo plano.
- El rayo refractado se acerca a la normal cuando pasa de un medio en el que se propaga a mayor velocidad a otro en el que se propaga a menor velocidad. Por el contrario, se aleja de la normal al pasar a un medio en el que se propaga a mayor velocidad.

Reflexión

La reflexión es el cambio de dirección de una onda, que al estar en contacto con la superficie de separación entre dos medios cambiantes, regresa al punto donde se originó. Ejemplos comunes son la reflexión de la luz, el sonido y las ondas en el agua.
   

REFLEXIÓN DE LA LUZ Y SUS LEYES

La luz es una manifestación de energía. Gracias a ella las imágenes pueden ser reflejadas en un espejo, en la superficie del agua o un piso muy brillante. Esto se debe a un fenómeno llamado reflexión de la luz. La reflexión ocurre cuando los rayos de luz que inciden en una superficie chocan en ella, se desvían y regresan al medio que salieron formando un ángulo igual al de la luz incidente, muy distinta a la refracción.
Es el cambio de dirección, en el mismo medio, que experimenta un rayo luminoso al incidir oblicuamente sobre una superficie. Para este caso las leyes de la reflexión son las siguientes:
1a. ley: El rayo incidente, el rayo reflejado y la normal, se encuentran en un mismo plano.
2a. ley: El ángulo de incidencia es igual al ángulo de reflexión.



ESPEJOS
Un espejo (del lat. specullum) es una superficie pulida en la que al incidir la luz, se refleja siguiendo las leyes de la reflexión.
El ejemplo más sencillo es el espejo plano. En este último, un haz de rayos de luz paralelos puede cambiar de dirección completamente en conjunto y continuar siendo un haz de rayos paralelos, pudiendo producir así una imagen virtual de un objeto con el mismo tamaño y forma que el real. La imagen resulta derecha pero invertida en el eje normal al espejo.
También existen espejos curvos que pueden ser cóncavos o convexos. En un espejo cóncavo cuya superficie forma un paraboloide de revolución, todos los rayos que inciden paralelos al eje del espejo, se reflejan pasando por el foco, y los que inciden pasando por el foco, se reflejan paralelos al eje.
Los espejos son objetos que reflejan casi toda la luz que choca contra su superficie debido a este fenómeno podemos observar nuestra imagen en ellos.
Para una imagen formada por un espejo parabólico (o esférico de pequeña abertura, donde sea válida la aproximación paraxial) se cumple que: 
\frac{1}{f} = \frac{1}{s} + \frac{1}{{s'}}
en la que f es la distancia del foco al espejo, s la distancia del objeto al espejo y s' la distancia de la imagen formada al espejo, se lee: «La inversa de la distancia focal es igual a la suma de la inversa de la distancia del objeto al espejo con la inversa de la distancia de la imagen al espejo».

m = \frac{h'}{h} =  - \frac{s'}{s}
en la que m es la magnificación o agrandamiento lateral.





El ejemplo más sencillo es el espejo plano. En este último, un haz de rayos de luz paralelos puede cambiar de dirección completamente en conjunto y continuar siendo un haz de rayos paralelos,  pudiendo producir así una imagen virtual de un objeto con el mismo tamaño y forma que el real.
Los espejos son objetos que reflejan casi toda la luz que choca contra su superficie debido a este fenómeno podemos observar nuestra imagen en ellos.

ESPEJOS CÓNCAVOS
Los espejos cóncavos hacen converger los rayos luminosos paralelos. Se usan en los focos de los vehículos. Al colocar una ampolleta en el foco, los rayos salen paralelos. Se pueden producir imágenes reales y virtuales, dependiendo de la ubicación del objeto.
Una imagen real se forma por intersección real de los rayos reflejados.
Una imagen virtual se forma en la intersección de las proyecciones de los rayos reflejados. 

Se usan en linternas, faroles y faros de automóviles, en los que se coloca la luminaria en el foco para que los rayos de luz se reflejen paralelos; también se utilizan en espejos para dentistas, telescopios.











ESPEJOS CONVEXO
Los espejos convexos hacen diverger los rayos luminosos paralelos. Se suele usar en supermercados y bancos como una manera de tener una vista de amplio espectro. En un espejo convexo sólo se forman imágenes virtuales.




En los espejos convexos los rayos luminosos cumplen las leyes de la reflexión, por lo tanto los rayos que inciden paralelos al eje principal, se separan, divergen, por lo cual a estos espejos se los denomina también divergentes.
La imagen obtenida resulta virtual, derecha y menor que el objeto.
A medida que el objeto se aleja del espejo el tamaño de la imagen es cada vez menor.


TRAYECTORIA  DE  LOS  RAYOS  EN LOS  ESPEJOS  CÓNVEXOS

1.Todo rayo paralelo al eje principal de un espejo convexo se refleja de modo que su prolongación pasa por el foco principal.
2.Todo rayo que incide sobre un espejo convexo en dirección al foco principal, se refleja paralelo al eje principal.
3.Todo rayo que incide sobre un espejo convexo en dirección al centro de curvatura, se refleja sobre sí mismo.



LENTES



Las lentes son objetos transparentes (normalmente de vidrio), limitados por dos superficies, de las que al menos una es curva.
Las lentes más comunes están basadas en el distinto grado de refracción que experimentan los rayos al incidir en puntos diferentes del lente. Entre ellas están las utilizadas para corregir los problemas de visión en gafas, anteojos olentillas. También se usan lentes, o combinaciones de lentes y espejos, en telescopios y microscopios, con la función de servir como objetivos como oculares. El primer telescopio astronómico fue construido por Galileo Galilei usando unalente convergente (lente positiva) como objetivo y otra divergente (lente negativa) como ocular. Existen también instrumentos capaces de hacer converger o divergir otros tipos de ondas electromagnéticas y a los que se les denomina también lentes. Por ejemplo, en los microscopios electrónicos las lentes son de carácter magnético.
En astrofísica es posible observar fenómenos de lentes gravitatorias, cuando la luz procedente de objetos muy lejanos pasa cerca de objetos masivos, y se curva en su trayectoria.

Lente convergente
Cuando se aplican estas reglas sencillas para determinar la imagen de un objeto por una lente convergente, se obtienen los siguientes resultados:
- Si el objeto está situado respecto del plano óptico a una, la imagen es real, invertida y de menor tamaño.
- Si el objeto está situado a una distancia del plano óptico igual a 2f, la imagen es real, invertida y de igual tamaño.
- Si el objeto está situado a una distancia del plano óptico comprendida entre 2f y f, la imagen es real, invertida y de mayor tamaño.
- Si el objeto está situado a una distancia del plano óptico inferior a f, la imagen es virtual, directa y de mayor tamaño.
Lentes divergentes.
La construcción de imágenes formadas por lentes divergentes se lleva a cabo de forma semejante, teniendo en cuenta que cuando un rayo incide sobre la lente paralelamente al eje, es la prolongación del rayo emergente la que pasa por el foco objeto F. Asimismo, cuando un rayo incidente se dirige hacia el foco imagen F' de modo que su prolongación pase por él, el rayo emergente discurre paralelamente al eje. Finalmente y al igual que sucede en las lentes convergentes, cualquier rayo que se dirija a la lente pasando por el centro óptico se refracta sin sufrir desviación.
Aunque para lentes divergentes se tiene siempre que la imagen resultante es virtual, directa y de menor tamaño, la aplicación de estas reglas permite obtener fácilmente la imagen de un objeto situado a cualquier distancia de la lente.

LENTES CONVERGENTES 

Lentille convergente image.svg
En los lentes convergentes las imágenes pueden ser reales o virtuales. Fórmula:
\frac{1}{f}=\frac{1}{do} + \frac{1}{di}

LENTES DIVERGENTES 

Lentediv 1.png
En las lentes divergentes las imágenes siempre resultan virtuales, de igual sentido y situados entre la lente y el objeto.
Lentes divergentes. Fórmula:
\frac{1}{-f}=\frac{1}{do}+\frac{1}{di}



CORRIENTE DIRECTA O CONTINUA


La corriente directa (CD) o corriente continua (CC) es aquella cuyas cargas eléctricas o electrones fluyen siempre en el mismo sentido en un circuito eléctrico cerrado, moviéndose del polo negativo hacia el polo positivo de una fuente de fuerza electromotriz (FEM), tal como ocurre en las baterías, las dinamos o en cualquier otra fuente generadora de ese tipo de corriente eléctrica.


Fuentes suministradoras de corriente directa o continua. A la izquierda, una batería de las comúnmente utilizada en los coches y todo tipo de vehículo motorizado. A la derecha, pilas de amplio uso, lo mismo en linternas que en aparatos y dispositivos eléctricos y electrónicos.
Es importante conocer que ni las baterías, ni los generadores, ni ningún otro dispositivo similar crea cargas eléctricas pues, de hecho, todos los elementos conocidos en la naturaleza las contienen, pero para establecer el flujo en forma de corriente eléctrica es necesario ponerlas en movimiento.

El movimiento de las cargas eléctricas se asemeja al de las moléculas de un líquido, cuando al ser  impulsadas por una bomba circulan a través de la tubería de un circuito hidráulico cerrado.

Las cargas eléctricas se pueden comparar con el líquido contenido en la tubería de una instalación hidráulica. Si la función de una bomba hidráulica es poner en movimiento el líquido contenido en una tubería, la función de la tensión o voltaje que proporciona la fuente de fuerza electromotriz (FEM) es, precisamente, bombear o poner en movimiento las cargas contenidas en el cable conductor del circuito eléctrico. Los elementos o materiales que mejor permiten el flujo de cargas eléctricas son los metales y reciben el nombre de “conductores”.


Una rama es un solo elemento, ya sea si este es activo o pasivo. En otras palabras, una rama representa a cualquier elemento de dos terminales.

Un nodo es un punto de conexión entre dos o más ramas. Comúnmente un nodo es representado con un punto en un circuito. Si un cortocircuito conecta a dos nodos, estos son vistos como un solo nodo.

Una malla o lazo es cualquier trayectoria cerrada en un circuito. Un lazo inicia en un nodo, pasa por un conjunto de nodos y retorna al nodo inicial sin pasar por ningún nodo más de una vez.

Figura 1. Circuito con nodos, ramas y mallas.

Se dice que un lazo es independiente si contiene al menos una rama que no forma parte de ningún otro lazo independiente. Los lazos o trayectorias independientes dan por resultado conjuntos independientes de ecuaciones.


Una red con b ramas, n nodos y l lazos independientes satisface el teorema fundamental de la topología de redes:


CONEXIÓN DE ELEMENTOS


Dos elementos están en serie si comparten exclusivamente un solo nodo y conducen en consecuencia la misma corriente. La conexión serie consta de elementos conectados secuencialmente terminal con terminal.


Figura 2. Conexión en serie en un circuito.

Dos o más elementos están en paralelo si están conectados a los dos mismos nodos y tienen en consecuencia la misma tensión entre sus terminales. La conexión en paralelo consta de elementos conectados al mismo par de terminales.

Sin embargo hay conexiones en donde no se distingue si el elemento esta en serie o en paralelo.

Figura 3. Conexión en paralelo en un circuito.

Corriente alterna

Figura 1: Forma sinusoidal.
Se denomina corriente alterna (abreviada CA en español y AC en inglés, de alternating current) a la corriente eléctrica en la que la magnitud y el sentido varían cíclicamente. La forma de oscilación de la corriente alterna más comúnmente utilizada es la de una oscilación senoidal (figura 1), puesto que se consigue una transmisión más eficiente de la energía. Sin embargo, en ciertas aplicaciones se utilizan otras formas de oscilación periódicas, tales como la triangular o la cuadrada.
Utilizada genéricamente, la CA se refiere a la forma en la cual la electricidad llega a los hogares y a las empresas. Sin embargo, las señales de audio y de radio transmitidas por los cables eléctricos, son también ejemplos de corriente alterna. En estos usos, el fin más importante suele ser la transmisión y recuperación de la información codificada (o modulada) sobre la señal de la CA.